
The role of limitations and SLAs
in the API industry

Antonio Gamez-Diaz
Universidad de Sevilla

Seville, Spain
antoniogamez@us.es

Pablo Fernandez
Universidad de Sevilla

Seville, Spain
pablofm@us.es

Antonio Ruiz-Cortés
Universidad de Sevilla

Seville, Spain
aruiz@us.es

Pedro J. Molina
Metadev

Seville, Spain
pjmolina@metadev.pro

Nikhil Kolekar
PayPal

San Jose, California, USA
nikhil@openweave.ai

Prithpal Bhogill
Google

Mountain View, California, USA
prithpal@google.com

Madhuranjan Mohaan
Google

Mountain View, California, USA
madhurranjanm@google.com

Francisco Méndez
AsyncAPI Initiative

Barcelona, Spain
fmvilas@gmail.com

ABSTRACT
As software architecture design is evolving to a microservice
paradigm, RESTful APIs are being established as the pre-
ferred choice to build applications. In such a scenario, there
is a shift towards a growing market of APIs where providers
offer different service levels with tailored limitations typically
based on the cost.

In this context, while there are well established standards
to describe the functional elements of APIs (such as the
OpenAPI Specification), having a standard model for Ser-
vice Level Agreements (SLAs) for APIs may boost an open
ecosystem of tools that would represent an improvement for
the industry by automating certain tasks during the devel-
opment such as: SLA-aware scaffolding, SLA-aware testing,
or SLA-aware requesters. Unfortunately, despite there have
been several proposals to describe SLAs for software in gen-
eral and web services in particular during the past decades,
there is an actual lack of a widely used standard due to the
complex landscape of concepts surrounding the notion of
SLAs and the multiple perspectives that can be addressed.
Given the RESTful APIs are becoming the norm there is an
opportunity to revisit the problem since the REST paradigm
provides a concise modeling and clear practices to model
APIs reducing the modeling complexity of traditional web
services.

In this paper, we aim to analyze the landscape for SLAs for
APIs in two different directions: i) Clarifying the SLA-driven
API development lifecycle: its activities and participants; 2)

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As
such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3340445

Developing a catalog of relevant concepts and an ulterior pri-
oritization based on different perspectives from both Industry
and Academia. As a main result, we present a scored list of
concepts that pave the way to establish a concrete road-map
for a standard specification to describe SLAs in APIs that
would be aligned with the Industry point of view.

CCS CONCEPTS
• Information systems → RESTful web services; • Software
and its engineering → Extra-functional properties; System
description languages;

KEYWORDS
RESTful APIs, SLA, OpenAPI Specification, SLA-driven
APIs, API Gateways
ACM Reference format:
Antonio Gamez-Diaz, Pablo Fernandez, Antonio Ruiz-Cortés, Pe-
dro J. Molina, Nikhil Kolekar, Prithpal Bhogill, Madhuranjan
Mohaan, and Francisco Méndez. 2019. The role of limitations and
SLAs in the API industry. In Proceedings of Proceedings of the
27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Tallinn,
Estonia, August 26–30, 2019 (ESEC/FSE ’19), 10 pages.
https://doi.org/10.1145/3338906.3340445

1 INTRODUCTION
In the last decade, RESTful APIs are becoming a clear trend
as composable elements that can be used to build and inte-
grate software [6, 12]. One of the key benefits this paradigm
offers is a systematic approach to information modeling lever-
aged by a growing set of standardized tooling stack. In this
context, the term of API Economy is being increasingly used
to describe the movement of the industries to share their
internal business assets as APIs [22] not only across internal
organizational units but also to external third parties; in
doing so, this trend has the potential of unlocking additional

https://doi.org/10.1145/3338906.3340445
https://doi.org/10.1145/3338906.3340445

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Gamez-Diaz, et al.

business value through the creation of new assets [4]. In fact,
we can find a number of examples in the industry that are
deployed solely as APIs (such as Meaningcloud1, Flightstats2

or Twilio3).
In order to be competitive in this such a growing market

of APIs, at least two key aspects can be identified: i) ease of
use for its potential developers; ii) a flexible usage plan that
fits their customer’s demands.

Regarding the ease of use perspective, third-party devel-
opers need to understand how to use the exposed APIs so
it becomes necessary to provide good training material but,
unfortunately, several API providers do not often write good
documentation of their products [7]. Notwithstanding, during
the last years, the OpenAPI Specification4 (OAS), formerly
known as Swagger specification, has become the de facto
standard to describe RESTful APIs from a functional per-
spective providing an ecosystem that helps the developer in
several aspects of the API development lifecycle5.

The benefits are twofold: from the API provider’s perspec-
tive, there are tools aimed to automate the server scaffolding,
an interactive documentation portal creation or the genera-
tion of unit test cases; from API consumer’s perspective, there
are tools to automate the creation of API clients, the security
configuration or the endpoints discovery and usage [1, 19, 21].

Concerning the usage plans perspective, as APIs are de-
ployed and used in real settings, the need for non-functional
aspects is becoming crucial. In particular, the adoption of
Service Level Agreements (SLAs) [17] could be highly valu-
able to address significant challenges that industry is facing,
as they provide an explicit placeholder to state the guaran-
tees and limitations that a provider offers to its consumers.
Exemplary, these limitations (such as quotas or rates) are
present in most common industrial APIs [8] and both API
providers and consumers need to handle how they monitor,
enforce or respect them with the consequent impact in the
API deployment/consumption.

However, to the best of our knowledge, there is no widely
accepted model to describe usage plans including elements
such as cost, functionality restrictions or limits. In this con-
text, a new type of infrastructure, coined as API Gateway [10],
has emerged to support API developers in the management
of multiple non-functional aspects such as consumer authen-
tication, request throttling or billing. From a deployment
perspective, API Gateways are usually implemented as vir-
tual appliances, virtual machine images or reverse proxies
that promote a decoupling from the main API artifact. In
contrast, the vendor-specific approach to non-functional con-
cerns typically represents a strong dependence with the API
Gateway provider.

In this paper, we aim to analyze the landscape in the SLA
and limitations for APIs directly from those participants

1https://www.meaningcloud.com/products/pricing
2https://developer.flightstats.com/getting-started/pricing
3https://www.twilio.com/sms/pricing
4The latest version of the OpenAPI Specification is available at https:
//github.com/OAI/OpenAPI-Specification
5https://openapi.tools

who have shown interest on participating in the definition
of an industrial standard for SLAs in APIs. Specifically, we
have started up conversations with members of the OpenAPI
Initiative who belong to the SLA interest group aiming to
gather information about their industrial perspective of the
role of SLAs and limitations in the APIs.

The rest of the paper is structured as follows: in Section 2
we introduce, briefly, the idea of Service Level Agreements
(SLA) and its importance in the API ecosystem. Next, in
Section 3, we describe the related work. Continuing, in Sec-
tion 4 we describe the SLA-driven API lifecycle. Further, in
Section 5 we present the industrial insights from different par-
ticipants. Finally, in Section 6, we show some final remarks
and conclusions.

2 SLAS IN A NUTSHELL
Service Level Agreements (SLAs) consist of a set of terms that
include information about functional features, non-functional
guarantees, compensation, termination terms and any other
terms with relevant information to the agreement. An agree-
ment signed by all interested parties should be redacted
carefully because a failure to specify their terms could carry
penalties to the initiating or responding party. Therefore,
agreement terms should be specified in a consistent way,
avoiding contradictions between them. However, depending
on the complexity of the agreement, this may become a chal-
lenging task. SLAs can, therefore, be used to describe the
rights and obligations of parties involved in the transactions
(typically the service consumer and the service provider);
among other information, SLA could define guarantees as-
sociated with the idea of Service Level Objectives (SLOs)
that normally represent key performance indicators of ei-
ther the consumer or the provider. In case the guarantee is
under-fulfilled or over-fulfilled SLAs could also define some
compensations (i.e. penalties or rewards). In such a context,
during the last years, there have been important steps towards
the automation of the management of SLAs, however, the
formalization in SLAs still remains an important challenge.

A SLA typically contains these concepts:
Name identifies the agreement and can be used for reference.
Context includes information such as the name of the par-

ties and their roles as initiator or responder in the
agreement. Additionally, it can include other impor-
tant information for the agreement.

Terms the two main types of terms are:
Service terms they provide service information by means

of:
Service description terms which includes information

to instantiate or identify the services and opera-
tions involved in the agreement.

Service properties which includes the measurable prop-
erties that are used in expressing guarantee terms.
They consist of a set of variables whose values can
be established inside the service description term.
These terms play an key role in the definition of
the service level which is actually offered to clients

https://www.meaningcloud.com/products/pricing
https://developer.flightstats.com/getting-started/pricing
https://www.twilio.com/sms/pricing
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://openapi.tools

The role of limitations and SLAs
in the API industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

and the price they pay for. For instance, in APIs, it
is common to see quota (e.g., 30K request/month)
and rate (e.g., 1 request/second) limitations that
define the service.

Guarantee terms they describe the service level objec-
tives (SLOs) agreed by a specific obligated party,
using Service Level Indicators (SLIs), a set of care-
fully defined quantitative measures of some aspect
of the level of service that is provided. It also in-
cludes the scope of the term (e.g. if it applies to a
certain operation of a service or the whole service
itself) and a qualifying condition that specifies the
validity condition under which the term is applied.
Guarantee terms often include compensations [17],
that is, penalties (or rewards) applied when the SLO
is unfulfilled or overfulfilled.

The concept of SLA is, very frequently, misunderstood:
some services claim to have an SLA when they are only defin-
ing the service description terms (e.g., limitations). SLAs are
agreements, that is, an explicit or implicit contract with your
users that includes consequences of the meeting (or missing)
the SLOs they contain [3, 20]. In many services, including
APIs, there is no SLA: if nothing happens if the SLOs are
not being met, it is not an SLA, but a mere description of
SLOs and service properties.

In the industry, the way in which a customer can select and
purchase a certain service level is by using pricing plans. In
Figure 1 it is depicted a real plan extracted from FullContact6,
a product which includes an API for managing and organizing
contacts in a collaborative way and it also matches emails
addresses looking for publicly available information on the
Internet to enrich the profiles.

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API

Card Reader

Rate Limit

6k + $.006 overage

2.4k + $.006 overage

250

15k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information
Licensed for Business Use

Select Plan

$99
$99/mo Starter Plan

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API

Card Reader

Rate Limit

15k + $.006 overage

6k + $.006 overage

250

50k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information
Licensed for Business Use

Select Plan

$199
$199/mo Basic Plan

Figure 1: Example of an API plan

6https://www.fullcontact.com/developer/

This example is composed of two paid plans having a fixed
price that is monthly billed. Regarding the limitations, for
each resource, a quota is being applied; for instance, in the
starter plan, only 6000 matches over Person are available.
Nevertheless, an overage is defined, that is, it is possible to
overcome the limit by paying a certain amount of money; in
this case, $0.006 per each request. Regardless of the accessed
resources, a common rate of 300 queries per minute is being
applied.

In this example, there is neither guarantee term nor SLOs.
All these elements belong to the set of service properties,
particularly, the limitations, which are, actually, defining the
service level (e.g., free, starter or basic)

3 RELATED WORK
The software industry has embraced integration as a key
challenge that should be addressed in multiple scenarios. In
such a context, the proliferation of APIs is a reality that
has been formally analyzed: in [18], authors performed an
analysis of more than 500 publicly-available APIs to identify
the different trends in current industrial landscape with the
following key results: in terms of paradigm they conclude that
500 out of 522 analyzed APIs provide an API based on REST;
regarding the format, the authors identified that nearly two
thirds of the APIs support JSON without supporting XML.
Concerning the access control, authors showed that most
APIs require some form of service registration for developers
to start using the API. Regarding the documentation, they
showed that generated documentation is being used in about
a half of the APIs, with documents generated by SwaggerUI
(from an OpenAPI Specification) taking the lead, suggesting
some tendency to make the API documentation machine-
readable and understandable as well. Specifically, from a
functional point of view, there is a clear trend with respect to
the functional description of the service: during the last years,
the OpenAPI Specification has consolidated as a de-facto
standard to define the different functional properties an API
provides. One of the reasons behind this success has been
a growing ecosystem of tools that leverages from the API
development life-cycle based on the information included in
OAS: from automated code generators that create an initial
scaffolding of the API to dynamic documentation portals
that allow developers to understand and test the API usage.

In such a consolidated market of APIs, non-functional
aspects are also becoming a key element in the current land-
scape. In [8], authors analyze a set of the 69 real APIs in
the industry to characterize the variability in its offerings,
obtaining a number of valuable conclusions about real-world
APIs, such as: (i) Most APIs provide different capabilities
depending on the tier or plan of the API consumer is will-
ing to pay. (ii) Usage limitations are a common aspect all
APIs describe in their offerings. (iii) Limitations over API
requests are the most common including quotas over static
periods of times (e.g., 1.000 request each natural day) and
rates for dynamic periods of times (3 request per second). (iv)
Offerings can include a wide number of metrics over other

https://www.fullcontact.com/developer/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Gamez-Diaz, et al.

Table 1: Analysis of SLA Models

Name F1 F2 F3 F4 F5 F6 F7
SLAC [24] DSL ✓ ✓

CSLA [14] XML ✓ ✓

L-USDL Ag. [11] RDF ✓ ✓ ✝ ✓

rSLA [23] Ruby ✓ ✓ ✓ ✓

SLAng [15] XML ✓

WSLA [16] XML ✓ ✓ ✓

SLA* [13] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modifications.

aspects of the API that can be domain-independent (such
as the number of returned results or the size in bytes of
the request) or domain-dependent (such as the CPU/RAM
consumption during the request processing or the number
of different resource types). Based on these conclusions, we
identify the need for non-functional support in the API devel-
opment life-cycle and the high level of expressiveness present
in the API offerings.

Furthermore, as monitoring is a key aspect, a number
of works have been presented aiming to analyze different
approaches for runtime monitoring. In [20], authors developed
a comparison framework for runtime monitoring approaches
and validate it by applying it to 32 existing approaches and
by comparing 3 selected approaches in the light of different
monitoring scenarios.

Furthermore, during the last decade, a number of SLA
models have been presented. We have analyzed the most
prominent academic and industrial proposals aimed to the
definition of SLAs in both traditional web services and cloud
scenarios.

Specifically, in Table 1, we have considered 7 aspects to
analyze in each SLA proposal, namely: F1 determines the
format in which the document is written syntax; F2 shows
whether the target domain is web services; F3 indicates if
it can model more than one offering (i.e., different opera-
tions of a web service); F4 determines if it allows modeling
hierarchical models or overriding properties and metrics; F5
shows whether temporal concerns can be model (e.g., in met-
rics); F6 indicates if there exists a tool for assisting users to
model using this proposal; F7 determines if there exists a
tool/framework for enacting the SLA.

Based on the comparison of the different SLA models
(summarized in Table 1), we highlight the following conclu-
sions: (i) None of the specifications provides any support
or alignment with the OpenAPI Specification; (ii) Most of
the approaches provide a concrete syntax on XML, RDF
(some of them they even lack concrete syntax) and there is
no explicit support to YAML or JSON serializations. (iii)
An important number of proposals are complete, but others
leave some parts open to being implemented by practitioners.
(iv) Besides the fact that a number of proposals are aimed
to model web services, they are focused on traditional SOAP

web services rather than RESTful APIs. In this context, they
do not address the modeling standardization of the REST-
ful approach: i.e., the concept of a resource is well unified
(a URL), and the amount of operations is limited (to the
HTTP methods, such as GET, POST, PUT and DELETE).
This lack of support of the RESTful modeling prevents the
approaches to have a concise and compact binding between
functional and non-functional aspects. (v) They do not have
enough expressiveness to model limitations such as quotas
and rates, for each resource and method and with complete
management of temporally (static/sliding time windows and
periodicity) present in the typical industrial API SLAs. (vi)
Most proposals are designed to model a single offering and
they mostly lack support to modeling hierarchical models
or overriding properties and metrics (F4); in such a context,
they cannot model a set of tiers or plans that yield a complex
offering that maintains the coherence by model and instead
they rely on a manual process that is typically error-prone.
(vii) finally, the ecosystem of tools proposed in each approach
(in the case of its existence) is extremely limited and aimed
to be solely as a prototype; moreover, they apparently are not
integrated into a developer community nor there is evidence
of this usage by practitioners in the industry.

4 INTRODUCING SLAS IN THE API
LIFECYCLE

In spite of the fact that each organization could address the
API lifecycle with slightly different approaches, we identify a
minimal set of general stages and activities. The first activity
corresponds with the actual Functional Development of the
API implementing and testing the logic; next a Deployment
activity where the developed artifact is configured to be
executed in a given infrastructure; finally, once the API
is up and running, an Operation activity starts where the
requests from consumers can be accepted. This process is
a simplification that can be evolved to add intermediate
steps (such as testing) or to include an evolutionary cycle
where different versions are deployed progressively. In order
to incorporate SLAs in this process, we expand to this basic
lifecycle where both API Provider and API Consumer interact
(as depicted in Figure 2).

Specifically, from the provider’s perspective, the Functional
Development can be developed in parallel with a SLA model-
ing where the actual SLA offering is written and stored in a
given SLA Registry. Once both the functional development
and the SLA modeling has concluded, the SLA instrumenta-
tion must be carried out, where the tools and/or developed
artifacts are parameterized, so they can adjust their behavior
depending on a concrete SLA and provide the appropriate
metrics to analyze the SLA status. Next, while the deployment
of the API takes place, a parallel activity of SLA enactment
is developed where the deployment infrastructure should be
configured in order to be able to enforce the SLA before the
API reaches the operation activity.

Complementary, from consumer’s perspective, once the
provider has published the SLA offering (i.e., Plans) in the

The role of limitations and SLAs
in the API industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Developer Product
manager

Product
operator

API
provider

Functional
development

SLA
modeling

Operation

SLA
enactment

Deployment

SLA registry

Offer
analysis

Offer
selection Consumption

SLA instance

SLA
instrumentation

Pr
ov

id
er

SL
A-

D
riv

en
 A

PI
 D

ev
el

op
m

en
t L

ife
cy

cl
e

C
on

su
m

er

API
consumer

Consumer

Figure 2: SLA-Driven API development lifecycle

SLA Registry, it starts the offer analysis to select the most
appropriate option (offer selection activity) and to create
and register its actual SLA; finally, the API Consumption is
carried out as long as the API is the Operation activity and
its regulated based on the terms (such as quotas or rates)
defined in the SLA.

In order to implement this lifecycle, it is important to
highlight that the SLA instrumentation, SLA enactment
and Operation activities should be supported by an SLA
enforcement protocol aimed to define the interactions for
checking if the consumption of the API for a given consumer
is allowed (e.g., it meets the limitations specified in its SLA)
and to gather the actual values of the metrics from the
different deployed artifacts that implement the API.

From an industrial perspective and regarding the implica-
tion across the entire development lifecycle of APIs, different
roles or stakeholders appear, as discussed below. The map-
ping role-activity is also depicted in Figure 2 by using the
RALPH notation [5].

Developer This role is composed by the team responsible
for the development of a certain API and making it
available for other teams. Their use cases are related to
the definition of Service Level Objectives (SLOs) since
they are the role most aware of the internal functioning
of the API. Namely:
∙ a better understanding of what SLOs can they rea-

sonably target so that they can offer an SLO for the
API.

∙ a better understanding of the performance of their
downstream dependencies (e.g., back-ends) so that
they can determine their effect on the SLOs.

∙ a better understanding of the performance of policies
in the proxy so that they can determine their effect
on the SLOs.

Product manager This role is composed of business people,
aligned with the company’s objectives. Their use cases
aim to satisfy customer’s needs and be aware of the
overall picture of the dependencies between services.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Gamez-Diaz, et al.

Namely, knowing the SLOs of the downstream depen-
dencies so that they can create products which meet
the customers’ needs.

Product operator This role is composed of system adminis-
tration people, who are responsible for monitoring and
reporting the service performance in SLOs. Their use
cases aim to be notified of any alert or incident and
take remedial actions. Namely:
∙ having alerts automatically set based on SLOs to

alert them of the risk of missing the objective so that
they can take remedial action.

∙ receiving regular reports detailing API performance
against SLOs, so that they can report to the business
owners.

∙ watching both the internal and external SLO com-
mitments for various APIs or Products so that they
can quickly categorize and prioritize the operational
efforts.

Consumer This role is composed of the set of API clients.
Their use cases aim to be informed of the different
service levels and claim if the SLOs are not being met.
Namely:
∙ knowing what service level is offered so that they can

make an informed decision about adopting the API.
∙ understanding the historical actual performance of

an API so that they can know how reliable they
might expect them to be.

∙ assuring that they are getting the service level that
they are paying for so that they can claim remedies
if SLOs are not met.

5 INDUSTRIAL DISCUSSION
5.1 The discussion process
We opened a call for interest on participating in a research
paper open to the OAI members belonging to the SLA4OAI
group7, as part of the OpenAPI Initiative. Our main goal is
to gather information about their industrial perspective of
the role of SLAs in the APIs.

In order to present general vision, we have classified the
participants in different groups regarding their role in the
API industry, namely: i) API infrastructure manager : are
the creator of middleware solutions such as API Gateways
or proxies, they do not develop any particular API, but they
enhance and enrich third-party ones with other features;
ii) API providers: are the developers of one or many APIs
and also responsible for setting the proper service level and
limitations values; iii) Others: represent a different set of
participant not included before, for instance, API enthusiasts
and people who have been involved in the creation of other
specifications.

As for an API infrastructure manager, we have Google
Apigee. As for an API provider, we have PayPal. Finally,
other participants include Async API and Metadev.

7More information at sla@openapi.groups.io

5.2 Describing some API concepts
In order to have a common vocabulary prior discussion,
some considerations about the concepts and terminology
took place:

5.2.1 SLA general concepts.

Context describes aspects such as the version, stakeholders
or the validity period.

Metrics are the elements that are being gathered and com-
puted.

Service Level Indicator (SLI) is a particular case of metric
which is used to assess one key aspect of the system.
They are typically implemented as a time series and
may involve some level of sophistication (e.g., sliding
windows) in its calculation.

Service Level Objective (SLO) is a precise numerical target
(often a ratio) for one or more SLIs, describing the min-
imum acceptable reliability or performance of a system.
A given system may have different SLOs for different
users, e.g., an internal objective and an external one.

Guarantee terms describe the commitments over certain SLI.
They also should describe the consequences of not
meeting this commitment in terms of compensations.

Service Level Agreement (SLA) is, therefore, a contract signed
with a user. Notably, SLIs and SLOs are technical con-
structs whereas SLAs are business constructs.

Service properties (or configuration) are the attributes con-
straints that are being used to drive the API behavior.

5.2.2 API constraints.

Quotas describe the limitations of use for a fixed/static pe-
riod of time. It is an entitlement to API usage over a
(usually relatively long) time period, e.g., 100000 calls
per month.

Rates describe the limitations of use for a dynamic period
of time. It is an entitlement to API usage over a (usu-
ally short) time period, e.g., 10 calls per second per
consumer.

Time constraint some APIs can offer a set of limitations re-
garding the time in which it is being requested. For
instance, some calls could be thought to be cheaper
during off-peak hours.

Authentication is the verification of the credentials of the
request. This process is based on sending the creden-
tials from the remote client to the server by using an
authentication protocol. Likewise, the authorization is
the process of verification that the connection attempt
is allowed. These mechanisms are required for the API
monetization.

5.2.3 API monetization.

Pricing is the way in which APIs are monetized. Typically,
some pricing models are: fixed (with or without over-
age) and pay-as-you-go. The first allows a developer to
purchase fixed values for a set of metrics (e.g., number
of calls) within a period (e.g., per month), but they

sla@openapi.groups.io

The role of limitations and SLAs
in the API industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

cannot exceed the established limitations; when over-
age is allowed, a small fee is charged if the developer
exceeds the values of the metrics (e.g., number of calls).

Plans is an approach to fit a wide range of business needs by
organizing the pricing in a set of tiers of plans.

Metering is the recording of the API usage in sufficient detail
to perform rating.

Rating is the conversion of records of API usage into an
owed amount of money. This conversion may involve
simply a fixed charge per API call, or considerably
more complex schemes.

Billing is the presentation to an API user of a report of
amounts owed, taking into account any discounts, ser-
vice credits, taxes, and revenue sharing.

Collection is the way of receiving and recording payments of
amounts owed by users of APIs.

Enforcement is preventing a user from using an API once
they have exhausted their pre-paid service credit, or
reached a credit limit.

5.3 API provider’s vision
For some API providers, the inclusion of SLAs is something
relatively new (less than five years ago), but the main issue is
the SLA field is the set of activities surrounding the SLOs to
improve the customer experience; for instance, the definitions
of metrics and SLIs and the monitoring process.

They believe that, in general, SLOs are drivers for cus-
tomer experience and digital businesses. As applications and
experiences are composed of business capabilities and they
are realized as APIs which may use other APIs to achieve
their business function, the customer experience is fueled by
complex tiered orchestration of APIs and, therefore, perfor-
mance and availability of experiences is a function of those
underlying services.

SLOs for APIs dictate suitability and choice of utilization
and, hence, having the ability to accurately measure and
monitor SLOs is a fundamental requirement. SLOs, also, dic-
tate performance and availability profiles for the application
and provide individual accountability for performance and
availability across enabling services. The common thread
is the correlation and tracking of the call-chain for service
invocation, the identification of the API subscription for
applications, monitoring aggregated and apportioned perfor-
mance profiles for applications and, finally, a common set of
performance metrics need to be defined, logged, monitored,
analyzed and reported.

As API providers, they use to consider the following set
of metrics/SLIs in their APIs:

∙ Call volume: number of API operations invocations
irrespective of response.

∙ Response time: the total amount of time, in millisec-
onds, it takes the service to respond to an API oper-
ation request aggregated as the 95th percentile, 90th,
and 50th.

∙ Availability: percentage of API calls completed without
causing a Failed Customer Interaction.

∙ Business Error Rate: percentage of API calls with busi-
ness error responses. A business error is an error that
is not a system error and could be caused by invalid
input, user error, business rules, policy constraints, or
lack of authorization.

∙ System Error Rate: percentage of API calls with system
error responses. A system error is an error that is caused
by a code defect, timeouts for underlying services, or
a framework failure, including a hardware network or
environment failure.

Regarding the SLI, these metrics need to be measured
at the individual API operation level. For REST APIs, the
URI for the resource and the HTTP method need to be
used as identifiers for API operation. The method identifier
from the API specification must be used for correlation. The
API operation metrics need to be correlated to the API
product and its major and minor version. This correlation
will provide insights into capability and ownership attribution
form the observed quality of service with respect to published
SLAs. The application identity of the originating application,
along with that of the immediate application invoking the
API operations must be tracked. The identity of Remote
Availability Zone (RAZ) for the service application must be
tracked to help understand the quality of service across RAZs.

Concerning the monitoring, the published SLOs for API
operations must be monitored for compliance. Since there
could be variance in API metrics for diverse application
use-cases, compliance must be computed using 95th, 90th
percentiles, and average aggregations initially, before being
base-lined for a longer term. As a daily basis, developer
and operation teams are responsible for checking the service
status and monitoring the key metrics. Specifically, the SLIs
are expected to be in an acceptable range, as defined in the
SLOs. For instance, the SLIs availability and latency are
measured to meet the target metrics in the SLOs.

Regarding the SLAs, they see SLAs as part of a wider
contract, which includes other legal aspects. In such a con-
text, the SLA is just a part of the service contract. At some
organizational levels, the value of the SLAs is concentrated
in the fulfillment of the guarantee terms when negotiating
contractual agreements and invoicing, that is, the SLA re-
porting. At this point, the SLA of the API services should
be considered to be reportable, that is, showing, at a glance,
the overall picture of the SLA state in each moment.

In service-based applications (SBAs) the fruitful composi-
tion of different services and APIs play a crucial role. There
is a strong dependency between different components and,
therefore, they are expected to be as reliable as possible
(and agreed in the SLA). As an SBA provider, it is strictly
necessary to know in advance all the values of the limitations
and the agreed SLA terms. Otherwise, the provider is not
able to set its own SLOs

5.4 API infrastructure manager’s vision
As API infrastructure manager, such as an API Gateway,
their platforms aim to define API concerns such as different

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Gamez-Diaz, et al.

service levels, API limitations (or entitlement) and pricing.
They also lay out their position on extending the OpenAPI
specification in this area.

Regarding the pricing, their platform provides support for:
fixed fee per API call, fixed fee per time period, volume-based
tiers of fees per API call, volume-based bundles of API calls,
revenue sharing schemes, charging variable amounts based
on arbitrary runtime attributes (parameters in the request,
elements of the response, time, geography, current load on
the API, etc).

They consider two different types of API limitations: quo-
tas and rate limits: i) Quotas are the business level construct
of enforcing how much access does one client have to an API
based on their tier. For instance: a gold tier customer may
have access to invoking a set of APIs 1000 per day, whereas a
bronze tier customer may only able to invoke 100 per day. 2)
Rate limiting, on the other hand, has a system-centric conno-
tation. For instance: if the infrastructure is only expected to
work for loads under 100 transactions per second, the proper
level of rate limiting policy would be irrespective of the kind
of customer invoking it.

Regarding the roles, they consider API producers as a
team responsible for API development and making the APIs
available for every other team. Additionally, they identify
the role of an API Product Manager as the one that has
business ownership of a portfolio of APIs also known as an
API Product. Their main focus is to manage these products
and look into ways of monetizing them via partners and
external developers. As API infrastructure managers, they
use to consider the following set of metrics/SLIs in their
APIs:

∙ Availability: percentage of API calls completed without
errors.

∙ Error rates: percentage of API calls with error re-
sponses

∙ Latency: the total amount of time that takes the service
to respond to an API operation request aggregated as
a percentile.

Concerning the modeling issues, their current priority
would be to codify SLIs and SLOs for APIs in a formal
description language by extending the OpenAPI Specifica-
tion. Based on such a codification their tooling could then
offer richer native support for the user stories. Nevertheless,
they recommend focusing first on defining an extension to
describe technical concerns (e.g., SLIs and SLOs) and keep
SLAs (as a business contract) out of the scope for a later ex-
tension. They believe that SLAs, as well as not being readily
amenable to such a codification, probably don’t belong in
OpenAPI Specification in any case.

They also suggest that monetization and pricing definition
should be part of a separate initiative. In the real world, there
is significant complexity in rating API usage, likely deserving
of its own OpenAPI extension.

5.5 Discussion’s results
In this section, we show some final remarks aiming to be able
to define a roadmap in the standardization of the SLA and
limitations in an API context.

The relevance of each concept described in Section 5 is
different for each provider. After asking them for scoring each
one, we gathered and aggregated the responses, as stated in
Table 2.

Table 2: Relevance of concepts for industrial participants

Items Score

General concepts

Context #
Metrics

SLIs
SLOs #

Guarantees #
SLAs ##

Configuration ###

API constraints

Quotas
Rates

Time constraints ##
Authorization ##

API monetization

Pricing ##
Plans ##

Metering #
Rating #
Billing ##

Collection ##
Enforcement #

Symbol denotes the relevance for the industrial participants.

The most important concepts are metrics/SLIs, quotas and
rates. The importance of the definition of SLOs for both API
producers and infrastructure manager is notorious. As also
stated by other participants, it is important to keep separate
concerns and different aspects (i.e., SLOs, plans, metrics);
they can be always be referenced externally if needed. The
granularity of definitions when defining an SLA model is a
problem: there exists the dichotomy between a fine-grained
approach (i.e., a fully comprehensive model description) and
a coarse-grained one (i.e., a description the most common
elements and paving the way for custom extensions).

The role of limitations and SLAs
in the API industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

In general terms, the participants belonging to the SLA4OAI
group, as part of the OpenAPI Initiative, tend to agree in a
manifesto during the standardization tasks:
Motivation fostering the importance of the SLA inside the

API development lifecycle is that SLAs are already
present in most commercial APIs. Since OAI is becom-
ing the de facto standard for the definition of APIs,
natural evolution to describe SLAs into OpenAPI Spec-
ification would expand the OAI benefits.

Goals Three are identified:
∙ Be as aligned as possible with the OpenAPI princi-

ples.
∙ Describe the most common elements in SLAs (e.g.,

plans, metrics, quotas, rates).
∙ Be integrated with the main OpenAPI Specification.

Non-goals There are two:
∙ Define a particular way to enforce SLAs.
∙ Be fully comprehensive including a wide set of ele-

ments found in different industrial APIs.
Design principles They are two:

∙ Pragmatism to spot the most common elements;
∙ Promote tooling to take advantage of the SLA4OAI

Specification.

6 CONCLUSIONS
From the Academia’s point of view, the fact of having a
standard model for the definition of SLAs in APIs could
foster the development of novel techniques aiming to deal
with the information contained in the SLAs. There is already
a number of works in the SLA field, as pointed out in Section
3, so aligning that with the API ecosystem would pave the
way for new challenges. As an example, this SLA model could
enable SLA-aware monitoring and testing techniques: includ-
ing non-functional and QoS requirements into the test cases.
Moreover, a formal analysis on the SLA model could unveil
inconsistencies in the set of API limitations. Furthermore,
SLA-aware model-driven development would experience an
improvement, since taking into account the SLA could be
helpful when deciding among different architectures. A first
step in this direction, in [9], we presented Governify for
APIs, an initial set of tools aimed to settle down our idea of
SLA-driven APIs.

Finally, this work is intended to collect the industrial
perspective on the challenge of standardizing the modeling of
SLAs and limitations in the API context, under the umbrella
of a well-assented specification for APIs as it is the OpenAPI
Specification. The contribution presented herein just lay the
first stone on the roadmap that is the modeling effort in
conjunction with relevant industrial players.

ACKNOWLEDGMENTS
This work is partially supported by the European Commission
(FEDER), the Spanish Government under projects BELI
(TIN2015-70560-R) and HORATIO (RTI2018-101204-B-C21),
and the FPU scholarship program, granted by the Spanish
Ministry of Education, Culture and Sports (FPU15/02980).

The authors would also like to thank for their time and
their valuable contributions to all the members of the Ope-
nAPI Technical Steering Committee and, specially, to the
rest of the Technical Committee behind the SLA4OAI Spec-
ification: Isaac Hepworth (Google), Jeffrey ErnstFriedman
(The Linux Foundation), Kin Lane (API Evangelist), Mike
Ralphson (The Linux Foundation) and Scott Ganyo (Google).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Gamez-Diaz, et al.

REFERENCES
[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API

patterns as partial orders from source code. In Proceedings of the
the 6th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations
of software engineering - ESEC-FSE ’07. ACM Press, New York,
New York, USA, 25. https://doi.org/10.1145/1287624.1287630

[2] Alain Andrieux, Karl Czajkowski, Kate Keahey, A. Dan, Kate Kea-
hey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. 2004.
Web Services Agreement Specification (WS-Agreement). (2004),
80 pages. http://forgc.gridforum.org/Public_Comment_Docs/
Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_
sp_tn_jpver_v2.pdf

[3] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Mur-
phy. 2016. Site Reliability Engineering: How Google Runs Pro-
duction Systems (1st ed.). O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472, USA.

[4] Michele Bonardi, Maurizio Brioschi, Alfonso Fuggetta, Emil-
iano Sergio Verga, and Maurilio Zuccalà. 2016. Fostering Col-
laboration Through API Economy: The E015 Digital Ecosystem.
In Proceedings of the 3rd International Workshop on Software
Engineering Research and Industrial Practice (SER&IP
’16). ACM, New York, NY, USA, 32–38. https://doi.org/10.1145/
2897022.2897026

[5] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Man-
fred Reichert, Jan Mendling, and Antonio Ruiz-Cortés. 2015.
RALph: A Graphical Notation for Resource Assignments in Busi-
ness Processes. In Advanced Information Systems Engineering,
Jelena Zdravkovic, Marite Kirikova, and Paul Johannesson (Eds.).
Springer International Publishing, Cham, 53–68.

[6] Roy Thomas Fielding. 2000. Architectural Styles and the Design
of Network-based Software Architectures. Building 54 (2000), 162.
https://doi.org/10.1.1.91.2433

[7] Forrester. 2015. API Management Solutions , Q3 2014. Technical
Report. Forrester.

[8] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes.
2017. An Analysis of RESTful APIs Offerings in the Industry.
In Service-Oriented Computing, Michael Maximilien, Antonio
Vallecillo, Jianmin Wang, and Marc Oriol (Eds.). Springer Inter-
national Publishing, Cham, 589–604.

[9] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes.
2019. Governify for APIs: SLA-Driven ecosystem for API gover-
nance. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2019). ACM, Tallin, Estonia.
https://doi.org/10.1145/3338906.3341176

[10] Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-
Cortés. 2015. Towards SLA-Driven API Gateways. In Actas de las
XI Jornadas de Ingeniería de Ciencia e Ingeniería de Servicios,
Juan Manuel Murillo (Ed.), Vol. 201232273. Sistedes, Santander,
9. https://doi.org/10.13140/RG.2.1.4111.5609

[11] José María García, Pablo Fernández, Carlos Pedrinaci, Manuel
Resinas, Jorge Cardoso, and Antonio Ruiz-Cortés. 2017. Modeling
Service Level Agreements with Linked USDL Agreement. IEEE
Transactions on Services Computing 10, 1 (1 2017), 52–65. https:
//doi.org/10.1109/TSC.2016.2593925

[12] Holger Harms, Collin Rogowski, and Luigi Lo Iacono. 2017.
Guidelines for Adopting Frontend Architectures and Patterns
in Microservices-based Systems. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE 2017). ACM, New York, NY, USA, 902–907. https:
//doi.org/10.1145/3106237.3117775

[13] Keven T. Kearney, Francesco Torelli, and Constantinos Kotsokalis.
2010. SLA * An abstract syntax for Service Level Agreements.
In 2010 11th IEEE/ACM International Conference on Grid
Computing. IEEE, Brussels, Belgium, 217–224. https://doi.org/
10.1109/GRID.2010.5697973

[14] Yousri Kouki, Frederico Alvares de Oliveira, Simon Dupont, and
Thomas Ledoux. 2014. A language support for cloud elasticity
management. In Proceedings - 14th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2014. IEEE, Chicago, IL, USA, 206–215. https://doi.org/10.1109/
CCGrid.2014.17

[15] D. D. Lamanna, J. Skene, and W. Emmerich. 2003. SLAng:
A language for defining service level agreements. In FTDCS,
Vol. 2003-Janua. IEEE, San Juan, Puerto Rico, USA, USA, 100–
106. https://doi.org/10.1109/FTDCS.2003.1204317

[16] H. Ludwig, A. Keller, A. Dan, and R. King. 2002. A service level
agreement language for dynamic electronic services. In WECWIS
2002. IEEE Comput. Soc, Newport Beach, CA, USA, USA, 25–32.
https://doi.org/10.1109/WECWIS.2002.1021238

[17] Octavio Martin-Diaz, Antonio Manuel Gutierrez Fernandez,
Manuel Resinas, Carlos Muller, Antonio Ruiz-Cortes, and Pablo
Fernandez. 2018. Automated Validation of Compensable SLAs.
IEEE Transactions on Services Computing (2018). https:
//doi.org/10.1109/tsc.2018.2885766

[18] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. 2018. An
Analysis of Public REST Web Service APIs. IEEE Transactions
on Services Computing (2018). https://doi.org/10.1109/TSC.
2018.2847344

[19] Tien N. Nguyen, Anh Tuan Nguyen, Trong Nguyen, Thanh
Nguyen, Hoan Anh Nguyen, Ngoc Tran, Hung Phan, and Linh
Truong. 2018. Complementing global and local contexts in rep-
resenting API descriptions to improve API retrieval tasks. In
Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering - ESEC/FSE 2018. ACM Press,
New York, New York, USA, 551–562. https://doi.org/10.1145/
3236024.3236036

[20] Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi,
and Paul Grünbacher. 2017. A comparison framework for runtime
monitoring approaches. Journal of Systems and Software 125 (3
2017), 309–321. https://doi.org/10.1016/j.jss.2016.12.034

[21] Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung
Kim. 2018. Augmenting Stack Overflow with API Usage Patterns
Mined from GitHub. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). ACM, New York, NY, USA, 880–883. https:
//doi.org/10.1145/3236024.3264585

[22] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar.
2016. From the Service-Oriented Architecture to the Web API
Economy. IEEE Internet Computing 20, 4 (July 2016), 64–68.
https://doi.org/10.1109/MIC.2016.74

[23] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and
H. Ludwig. 2016. rSLA: A Service Level Agreement Language
for Cloud Services. In 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD). IEEE, San Francisco, CA, USA,
415–422. https://doi.org/10.1109/CLOUD.2016.0062

[24] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola.
2014. SLAC: A Formal Service-Level-Agreement Language for
Cloud Computing. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC
’14). IEEE Computer Society, Washington, DC, USA, 419–426.
https://doi.org/10.1109/UCC.2014.53

https://doi.org/10.1145/1287624.1287630
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf
https://doi.org/10.1145/2897022.2897026
https://doi.org/10.1145/2897022.2897026
https://doi.org/10.1.1.91.2433
https://doi.org/10.1145/3338906.3341176
https://doi.org/10.13140/RG.2.1.4111.5609
https://doi.org/10.1109/TSC.2016.2593925
https://doi.org/10.1109/TSC.2016.2593925
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1109/CCGrid.2014.17
https://doi.org/10.1109/CCGrid.2014.17
https://doi.org/10.1109/FTDCS.2003.1204317
https://doi.org/10.1109/WECWIS.2002.1021238
https://doi.org/10.1109/tsc.2018.2885766
https://doi.org/10.1109/tsc.2018.2885766
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1145/3236024.3264585
https://doi.org/10.1145/3236024.3264585
https://doi.org/10.1109/MIC.2016.74
https://doi.org/10.1109/CLOUD.2016.0062
https://doi.org/10.1109/UCC.2014.53

	Abstract
	1 Introduction
	2 SLAs in a nutshell
	3 Related work
	4 Introducing SLAs in the API lifecycle
	5 Industrial discussion
	5.1 The discussion process
	5.2 Describing some API concepts
	5.3 API provider's vision
	5.4 API infrastructure manager's vision
	5.5 Discussion's results

	6 Conclusions
	Acknowledgments
	References

